
Extraction of abiotic resources

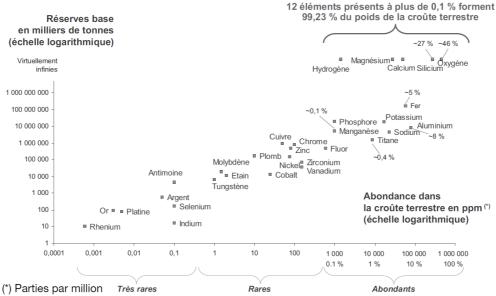
- Reserves
 - Definitions
 - Metals focus
 - Concentrations
 - Mineralogical wall
 - Oil focus
 - Assessing reserves
 - Caution in interpretation
- Impacts of extractive activities
 - Growing interdependancies
 - Energy footprint of minerals
 - Material footprint of energy
 - Environmental focus
 - Other abiotic resources: water & air quality
 - Biotic resources: wildlife and land
 - Socio-economical focus
 - Contrasted local realities
 - Global frictions...
 - Rootedin historical inequalities

1. Reserves

Adaptated from ^[3]

[3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?

[11] USGS, 2014. Estimate of Undiscovered Copper Resources of the World[online]. Fact Sheet.


[12] USGS, 2020. Mineral Commodity Summaries[online].

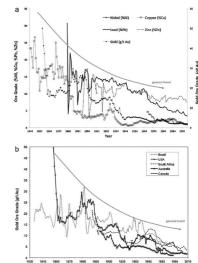
- Reserves/Resources data are highly dynamic
 - May be reduced as
 - ore is mined
 - feasibility of extraction diminishes
 - May increase as
 - additionnal deposits are discovered
 - currently exploited deposits are thoroughly explored
- The Copper example : $^{[11]\&[12]}$
 - Reserves/Resources ~ 500 Mt (2014) -> 870 Mt (2020)
 - ∘ InferredReserves ≈ 2.1 Bt(2014)
 - ∘ UltimateReserves ~3.5 Bt(2014)

2. Metals focus

[3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?

2.1. Concentration of minerals

Sources : BRGM, USGS 2007

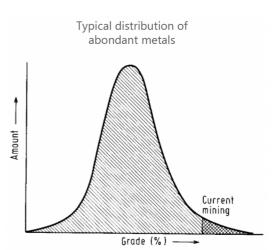

Extracted from ^[3]

- Average concentrations of minerals in Earth crust must be compared to typical concentrations in exploited ores
- Even for abondant elements, high ratio between economically viable concentrations and Earth crust average
 - Iron(Fe) example: 30-60 % in ores versus 5
 % average in Earth crust
- Precious metals are logically the only ones where the order of magnitude is equivalent
 - Typical example: Gold (Au)

Metal	Typical concentration of exploited ores	World mean	Metal mass per ton of ore
Fe	[30-60] %		[300-600] kg
Al	[20-30] %		[200-300] kg
Zn	[3-9] %	8%	[30-90] kg
Pb	[2-7] %	5%	[20-70] kg
Ni	[1,5-3] %		[15-30] kg
Cu	[0,5-2] %	0,8 %	[5-20] kg
Au	[0,0002-0,0006] %	0,0003 %	[2-6] kg

- If no major discoveries, historical tendancy is a decrease in average concentration causing an increase in cost and impacts:
 - Example of Copper (Cu): 1,8% (1930) -> 0,8% 2010
 - See opposite: (a) Concentration of varied ores in Australia(b) Concentration of Golde ores in the world

Extracted from ^[24]

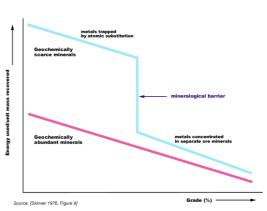


[24] PRIOR, T *et al.*, 2012. Resource depletion, peak minerals and the implications for sustainable resource management.

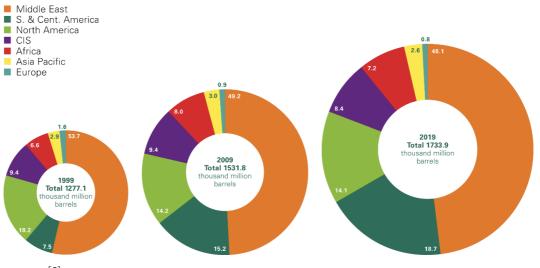
2.2. B. Mineralogical barrier

- Abondant metals mining follows a simple curve :
 - Highest-grade ores are mined first, as they're the most available ones-technically and economically
 - Like for any finite resources, mining depletes stocks, then target less high-grade ores, until a production peak happen, after what availability diminishes

Extracted from ^[13]


- Scarce metals are usually not found in common rocks as separate minerals but as atoms substitutions (that's makes them rare)
 - Consequently, mining activities directly seek concentrated ores (geologically rarer themselves), then must rely on more common ores, following a bimodal mining curve

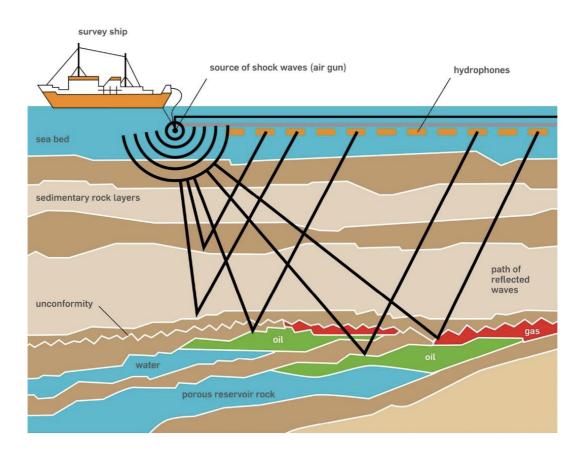
ement present by atomic Typical distribution of rare metals Under the second second


• The shift to these more common rocks can be a turning point in processes needed, and generate a mineralogical barrier

[13] SKINNER, B.J., 1979. Chapter 10 A Second Iron Age Ahead? In: *Studies in Environmental Science*. [14] AYRES, Robert U, 2001. Resources, Scarcity, Growth and the Environment. 2001. P.35.

3. Oil focus

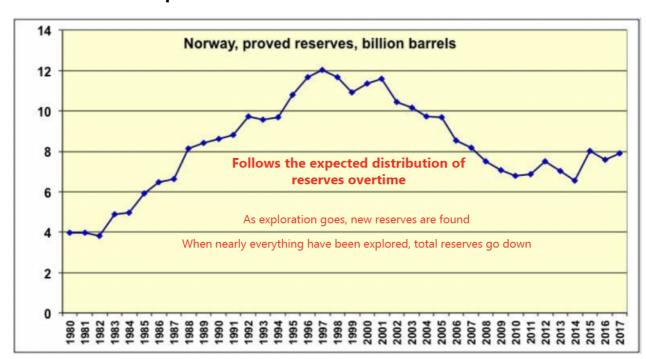
3.1. Assessing reserves [15]

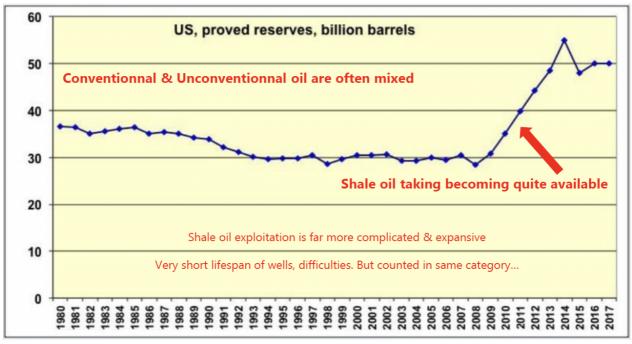


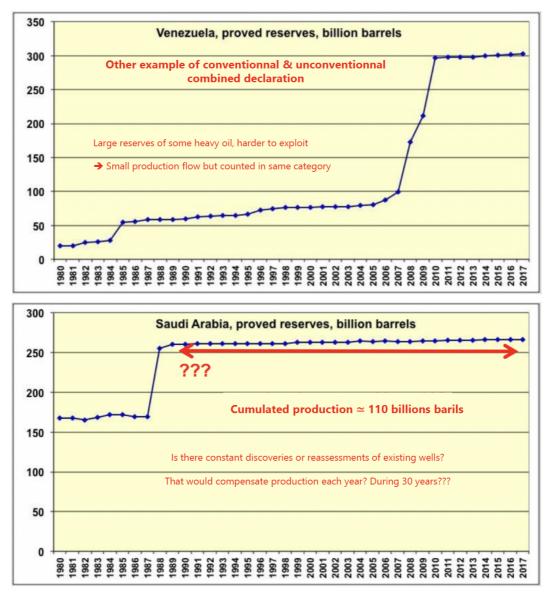
Extracted from ^[6]

[6] BP, 2020. BP Statistical Review of World Energy. [online].

[15] JANCOVICI, Jean-Marc, 2019. Les Energies fossiles. Ecole des Mines [online].


- When a potential reserve of oil is suspected, sismography combined with exploratory drilling is used to estimate :
 - Quantities of oil
 - Probable recovery rate of the oil


• As any oil extraction needs heavy infrastructure -> CAPEX>>OPEX.


Which means the dynamics of a specific reserve are :

- Strongly dependent on quantities& recovery rates estimations accuracy
- Weakly dependent of variations in oil price (infrastructure already there)
- Who evaluate & declare the reserves?
 - A lot of oil companies are state-owned. Around 10% of oil compagnies are listed on the stock exchange -> legally binded to communicate the estimations
 - Large part of data comes from countries but :
 - Geopolitical strategies due to production international agreements
 - Different conventions on what to count and in which category
 - No independent verifications

3.2. Caution in interpretation

Adapted from ^[15]

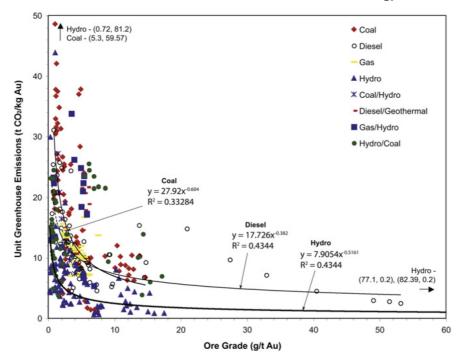
4. Medias

https://pod.utt.fr/video/3946-ev14-abiotic-resources-4-extraction-reserves/

5. Impacts of extractive activities

5.1. Growing interdependancies

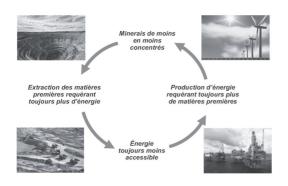
a) Energy footprint of minerals


- A lot of operations involved
 - Extraction, mineral processing, metal working
 - 1st order transformation: smelting and refining
 - Transport between steps
 - This raw metal undergo varied 2nd order transformations to become raw products with diverging final energetical footprint
 - Copper example: tubes 20-30% higher footprint than foils

- Uncertainties in data
 - Diversity of production sites (mineral concentration, efficiency of processes)
 - Varied studies perimeter (no standard approach, weigh of hypothesis)
 - Disparities in sources of information available

Production energy (tep/t)	Mining production (Mt)	Total energy (Mtep)
0,4-0,5	1360	544-680
3,8-7,4	39,7	147-288
0,8-3,6	3,6	12-56
?	21,5	?
0,9-1,9	11,3	10-21
?	14	?
?	5,7	?
2,7-4,6	1,6	4-7
8,6-10,2	0,8	7-8
0,5-1,1	3,8	2-4
4,6	0,3	1-2
In Mtep		730-1070
For World	Primary energy	7-10%
	energy (tep/t) 0,4-0,5 3,8-7,4 0,8-3,6 ? 0,9-1,9 ? 2,7-4,6 8,6-10,2 0,5-1,1 4,6 In Mtep	energy (tep/t) production (Mt) 0,4-0,5 1360 3,8-7,4 39,7 0,8-3,6 3,6 ? 21,5 0,9-1,9 11,3 ? 14 ? 5,7 2,7-4,6 1,6 8,6-10,2 0,8 0,5-1,1 3,8 4,6 0,3 In Mtep

Extracted from ^[3]


- Extraction & Refining of metals
 - Less & less concentrated mineral resources -> more & more energy

Extracted from ^[24]

[24] PRIOR, T *et al.*, 2012. Resource depletion, peak minerals and the implications for sustainable resource management.

b) Material footprint of energy

- Extraction & Refining of oil
 - ≈5% of world Steel use for gas/oil exploration & production
 - 'Offshore', 'Depp offshore', or

Unconventionnal oil -> rise in the use of platforms, ships, complex tools, etc.

- Even « Renewable energies » are quite materially dependent:
 - A 1MW windmill contains ≃ 3t of Cu, and needs 10x more steel & concrete per kWh than a classical plant
 - A classical PV installation (Si) needs \approx 4kg of Cu per kW capacity.
 - Most these technologies also need rare metals like In, Ga, Se, Ne, etc.

5.2. Environmental focus

a) Other abiotic resources: water & air quality

Impacts on abiotic resources: water & air quality [16] & [17]

[16] ELAW, 2010. 1st Edition: Guide pour l'évaluation de EIE de projetsminiers [online].

[17] Hydraulic Fracturing 101. Earthworks [online].

[3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?

- Acid drainage :
 - Most ores contains sulfure -> exposition to the surface through mining -> formation of sulfuric acid -> dissolves other metals and spills out in surrounding rivers or groundwater Ex: Summitville (1992-1995)
 [3]

- Settling tanks
 - Containment of mining wastes -> infiltration into ground water or over flowsi n case of rain(one of the worst possible industrial accidents in terms of environmental impact) *Ex: Aznacollar 1998 in Spain*

- Mines dewatering
 - Mining sometimes directly meet the groundwater table -> pursuit of mining need pumping of water -> reduction or elimination of water circulation in surrounding zones, varied degradations on soils and wildlife

Ex: Sadiola Gold mine pumped 5,6 Mm3 of water in a year (\simeq consommation of 800 000 Malians)^[3]

- Mobile or non-mobile sources of air pollutants
 - Fuel combustion & exhaust gases of machines or vehicules -> CO2, CO, organic compounds -> climate change
 - Waste particles dispersed by wind
 - Precious metals are often melted onsite before sent to rafineries -> high levels of Hg, As, SO2
- Uncontrolled mercury (Hg) rejections
 - [Hg] in ores can rach 10 mg/kg -> 1 Mt of ores produced means 10t of Hg potentially emitted
 - Vaporization of Hg in gold metling is a major cause of Hg mission in atmosphere

Specifics to oil :

- Hydraulic fracturing & Oil spills contaminations
- Details in ^[17]

b) Biotic resources: wildlife and land

- [16] ELAW, 2010. 1st Edition: Guide pour l'évaluation de EIE de projetsminiers [online].
- [17] Hydraulic Fracturing 101. Earthworks [online].
 - Loss of habitat
 - Excavation or accumulation of waste -> mobile species (birds and some mammals)are hunted out + sedentary species (little mammals, reptiles, invertebrates) are killed
 - Acid drainage or dewatering -> severes impacts on surrounding aquatic life
 - These 2 points -> perturbation of trophic chains (diminution of food for the higher- level predators)
 - Disparition of vegetation
 - Fracture of habitat
 - Large portions of land occupied
 - -> perturbation of migrations or local isolation of species

Specifics to oil (again):

- Hydraulic fracturing & Oil spills contaminations
- Details in ^[17]

5.3. Socio-economical focus

- [16] ELAW, 2010. 1st Edition: Guide pour l'évaluation de EIE de projetsminiers [online].
- [17] Hydraulic Fracturing 101. Earthworks [online].
- [3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?

a) Contrasted local realities

- [16] ELAW, 2010. 1st Edition: Guide pour l'évaluation de EIE de projets miniers [online].
- [17] Hydraulic Fracturing 101. Earthworks [online].
- [3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?
 - Human migrations
 - Displacement & reinstallation of communities (expropriated or not) -> resentment + power perturbations -> local conflicts
 - New high economic activity -> arrival of new populations -> new pressures on land, water or waste management -> tensions & potential conflicts with original inhabitants

Ex of Grasberg Mines in Indonesia: From <1000 (1973) to 110 000 (1999) ; violent conflicts during 1970-1990

- New needs of infrastructures -> urbanization -> wide-ranging effects
- Loss of drinkable water access
 - Due to uncontrolled exploitations & industrial pollutions
- Pressures on means of existence
 - Mining activities not correctly managed -> economic cost on other sectors (agriculture & fishing in particular)
- Public health consequences
 - Potential sanitary risks are often seglected

-> example of improvised mining towns are been shown to threaten food security and availability

- Indirect effects of exposition to mining activities are higher incidences of tuberculosis, asthma, chronic bronchitis, etc.
- A review of metals direct toxicity impacts can be found in a dedicated chapter of ^[3]
- Cultural & Esthetics
 - Destruction of cultural resource by surface perturbation or excavation
 - To pographical or hydrological changes
 - Higher access to previously inacessible locations
 - -> theft or vandalism of cultural artifacts
 - Visual impacts due to deforestation& presence of infrastructures

b) Global frictions...

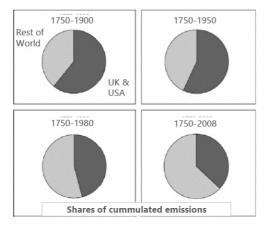
[25] HUISMAN, J., PAVEL, C., et al. 2020. Critical Raw Materials in Technologies and Sectors -Foresight [online].

[3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?

- Emerging geopolitical stakes for metals
 - As for oil, the main consumer countries are also the ones with the smallest reserves
 - Understanding of these problematics is more recent for metals and is parallel to the recent rise of metals prices in the 2000s
 - The EU Commission now regurlaly pubish reports on the matter^[25]
 - Strategical stocks of metals constituted during Cold War, dismantled after the 90s, are back since15-20 years
- Capitalistic concentration of compagnies :
 - in 2008, 4173 compagnies in mining but 149 majors (3,6%) were controlling 83% of the market^[3]
 - Power to initiate struggles with states over natural resources and their exploitation, in order to maximize private profits and mutualize losses or environmental externalities
 - Complex conflicts with explicit and implicit actors

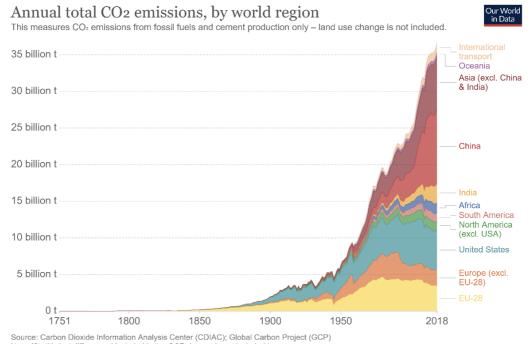
[3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?

- Armed conflicts already existing
 - Not as visible as oil conflicts yet
 - DRC (Democratic Republic of the Congo) being the richer african country in metals, its history since mid-XXth is a paradigmatic example
- Crossings with colonization & neocolonization
 - 1961 Defense agreements between France, Niger, Dahomey & Ivory Coast garantee limitation of exportations to other countries than France in case of needs
 - 2007 contract of China & RDC: heavy construction work (6 billions \$) in in exchange of metal mining authorizations (10 Mt of Cu, 200 000 t of Co, 372 t of Au)
 - With explicit intention of asking land if the metal provisionning does not meet expectations
 - Direct implication in local economy

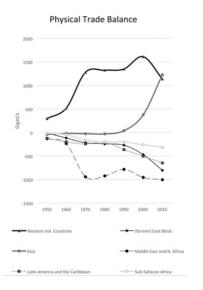

No need to developp on the well known history of oil geopolitical conflicts since mid-XXth!

c) Rooted in historical inequalities

[3] BIHOUIX, P., GUILLEBON, B. ,2010. Quel futur pour les métaux?


[18] RITCHIE, Hannah and ROSER, Max, 2017. CO_2 and Greenhouse Gas Emissions. *Our World in Data*[online].

[19] BONNEUIL, C., FRESSOZ, J-B., 2016. L'événement anthropocène: la Terre, l'histoire et nous.



Adapted from ^[19]

- Developed countries did develop themselves on the exploitation of countries now productors & consumers
 - Between 1815-1880, 5/6 of British investments were outside their empire, chiefly to develop mining (coal, in particular) and transport of ores by rail in dominated countries ^[19]

Source: Carbon Dioxide Information Analysis Center (CDIAC); Global Carbon Project (GCP) Note: 'Statitistical differences' included in the GCP dataset is not included here. OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY

- 20th century have mainly reorganized exploitation, but it continued on
 - USA based its economic rise on intensive use of its own resources during 1870-1940
 - Supported decolonization mainly to gain access to material resources of newly independent countries
 - Conversely, East block exploited its own environnment above all
- Emerging trend ->
 - Reappropriations of national resources & path of developpmen
 - Setting of export restrictions ^[3]

Extraction of abiotic resources

5.4. Medias

https://pod.utt.fr/video/3947-ev14-abiotic-resources-5-extraction-impacts/